首页 > 基站 >正文

氮化镓的技术优缺点及在无线基站中的应用分析

2020-11-05 15:40 • 稿源: 21IC电子网

用于无线基础设施的半导体技术正在经历一场重大的变革,特别是功率放大器(PA)市场。横向扩散金属氧化物半导体(LDMOS)晶体管在功率放大器领域几十年来的主导地位正在被氮化镓(GaN)撼动,这将对无线基站的系统性能和运营成本产生深远的影响。

氮化镓显而易见的技术优势(包括能源效率提高、带宽更宽、功率密度更大、体积更小)使之成为LDMOS的天然继承者服务于下一代基站,尤其是1.8GHz以上的蜂窝频段。尽管以前氮化镓与LDMOS相比价格过高,但是MACOM公司的最新的第四代硅基氮化镓技术(MACOM GaN)使得二者成本结构趋于相当。

这里我们将详细了解下LDMOS、碳化硅基(SiC)氮化镓和MACOM氮化镓技术的优缺点,从产品性能、成本控制以及供应链生态系统方面权衡它们的利弊。作为一家在无线基础设施应用领域有着几十年的经验和专业知识的公司,MACOM在评估它们在商业基站应用领域的专业度方面无疑更有发言权。

误区一:硅基氮化镓功率晶体管比LDMOS的效率优势可忽略不计,与碳化硅基氮化镓器件的效率优势无法比拟。

MACOM公司基于氮化镓的MAGb功率晶体管在2.6GHz频段可提供高于70%的峰值效率以及19dB的线性增益,若匹配以合适的谐波阻抗其峰值效率会超过80%。该功率效率性能可与最优秀的碳化硅基氮化镓器件的效率相匹敌,与传统LDMOS器件相比有10%的效率提升。

若能被正确地应用,这个效率优势会帮助节省大量电费,并通过减小散热装置、供电模块(PSU)以及射频拉远单元(RRH)的整体尺寸,节省资本支出(CAPEX),这将对营运商节省运营支出(OPEX)产生深远的影响。若平均电费为$0.1/KWh,仅将新的宏基站替换使用氮化镓技术,一年节省的电费可超过1亿美金。

氮化镓的技术优缺点及在无线基站中的应用分析

LDMOS,MACOM GaN 和 GaN on SIC 三者的优劣势对比

误区二:碳化硅基(SiC)氮化镓的热特性保证了功率放大器更好的可靠性。

MACOM公司的MAGb功率晶体管系列在真实的基站工作温度200°C的环境下MTTF超过106小时,由此可见该器件在基站现场确实和碳化硅基氮化镓器件一样稳健可靠,与传统LDMOS器件的持久性相当。

MACOM借助先进的晶体管设计和封装技术实现与碳化硅基氮化镓器件相同的热性能。通过优化晶体管布线设计以及采用创新的散热材料和裸片焊接方法,有效消除了Si相对SiC在衬底中15%到30%的导热性差异。

氮化镓的技术优缺点及在无线基站中的应用分析

误区三:基于氮化镓的器件引入了线性问题,很难用数字预失真技术来修正。

展开阅读全文
免责声明:"5G之家"的传媒资讯页面文章、图片、音频、视频等稿件均为自媒体人、第三方机构发布或转载。如稿件涉及版权
等问题,请与我们联系删除或处理。稿件内容仅为传递更多信息之目的,不代表本网观点,亦不代表本网站赞同其观点或证实
其内容的真实性,更不对您的投资构成建议。我们不鼓励任何形式的投资行为、购买使用行为。

相关推荐

关键词:

本站由阿里云提供计算和安全 Copyright ©5gzj.net. All Rights Reserved. 违法举报平台12377 浙ICP备20028707号-2